vibe.embedding_providers.base¶
Base class for embedding providers.
Embedding providers generate dense vector representations of text for semantic similarity search. This is used for: - Matching requirements to document sections - Finding similar examples for few-shot learning - Hybrid retrieval (combining with BM25)
EmbeddingProviderConfig ¶
Configuration for embedding providers.
| Attributes: |
|
|---|
from_dict ¶
from_dict(config: dict[str, Any]) -> EmbeddingProviderConfig
Create from configuration dictionary.
EmbeddingProvider ¶
Abstract base class for embedding providers.
Subclasses must implement: - embed(): Embed a single text - embed_batch(): Embed multiple texts efficiently
The base class provides: - Configuration handling - Logging setup - Batch splitting for large inputs
__init__ ¶
__init__(config: dict[str, Any] | None = None) -> None
Initialize the provider.
| Parameters: |
|
|---|
embed ¶
embed(text: str) -> list[float]
Generate embedding for a single text.
| Parameters: |
|
|---|
| Returns: |
|
|---|
embed_batch ¶
embed_batch_with_splitting ¶
Embed texts, automatically splitting into batches if needed.
This is a utility method that subclasses can use to handle large inputs by splitting into config.batch_size chunks.